Разряды и классы чисел

Описание

Программа «Задание на неделю 4 класс» формирует задачи и примеры по математике, которые помогут закрепить ребенку все знания, полученные в четвертом классе в течение года, а также подготовится к проверочной и контрольной работе.

На листе формата А4 формируется 13 заданий по математике. При этом задания даются в небольшом объеме, но с максимальным охватом всех типов примеров. Это позволяет детям быстро вспомнить материал 4 класса.

В каждую карточку входят следующие виды заданий:

  • чередующиеся задания, включающее:

      • задание на повторение понятий «сумма», «разность», «произведение» и «частное» с вычислениями;
      • примеры на нахождение сторон, периметра и площади прямоугольника;
      • простые задачи на движение: нахождение скорости, времени или расстояния.
  • примеры на сложение, вычитание, умножение и деление, в том числе: логические (вставить знаки для получения верного равенства),
  • выражения на порядок действий (от пяти действий со скобками);
  • примеры на умножение и деление разных типов: умножение и деление круглых чисел, внетабличное умножение и деление;
  • примеры на деление с остатком с вычисление частного, уменьшаемого или вычитаемого;
  • решение уравнений;
  • задание на сравнение дробей (долей)
  • задание на нахождение части от числа (от суммы, разности, произведения или частного);
  • задания на повторение единиц измерения длины, массы и времени;
  • задание на нахождение доли и процентов от единиц измерения: длины, площади, массы и времени;
  • примеры в столбик: сложение трехзначных чисел, вычитание трехзначных чисел, умножение двухзначного числа на однозначное, умножение трехзначного числа на однозначное и двузначное, на однозначное число.

Программа «Задание на неделю 4 класс» написана в Excel с помощью макросов. Данные генерируются случайным образом, что позволяет получить более тысячи вариантов заданий для 4 класса, карточки заданий не повторяются.

Для ознакомления с программой можно скачать изображение карточки, которая получилась с помощью программы. Для получения новой карточки математического диктанта достаточно скачать, нажать на кнопку и распечатать.

Другие программы, которые помогут закрепить навыки счета:

  • Цепочки примеров в пределах 1000 (все действия)
  • Числовые пирамиды большие (в пределах 50,100 и больше)
  • Умножение и деление по типам (табличное, внетабличное, круглых чисел)
  • Сложение и вычитание в столбик
  • Умножение и деление в столбик
  • Деление с остатком на число (с выбором уровня сложности)
  • Порядок действий в пределах 1000 (все действия)
  • Сложные примеры на порядок действий
  • Выражения с именованными числами

Признак делимости на 4, примеры

Мы можем пойти простым путем и поделить однозначное натуральное число на 4 для того, чтобы проверить, делится ли это число на 4 без остатка. Так же можно поступить с двузначными, трехзначными и проч. числами.  Однако, чем больше становятся числа, тем сложнее проводить с ними действия с целью проверки делимости их на 4.

Гораздо проще становится использовать признак делимости на 4. Он предполагает проведение проверки делимости одной или двух последних цифр целого числа на 4. Что это значит? Это значит, что некоторое число a делится на 4 в том случае, если одна или две крайние правые цифры в записи числа a делятся на 4. Если число, составленное из двух крайних правых цифр в записи числа a не делятся на 4 без остатка, то и число a не делится на 4 без остатка.

Пример 1

Какие из чисел 98 028, 7 612 и 999 888 777 делятся на 4?

Решение

Крайние правые цифры чисел 98 028, 7 612 составляют числа 28 и 12, которые делятся на 4 без остатка. Это значит, что и целые числа − 98 028, 7 612​​​​​​ ​делятся на 4 без остатка.

Последние две цифры в записи числа 999 888 777 образуют число 77, которое не делится на 4 без остатка. Это значит, что и исходное число на 4 без остатка не делится.

Ответ: −98 028 и 7 612.

Если предпоследней цифрой в записи числа является , то нам необходимо этот ноль отбросить и смотреть на оставшуюся крайнюю правую цифру в записи. Получается, что две цифры 01 мы заменяем 1. И уже по одной оставшейся цифре мы делаем вывод о том, делится ли исходное число на 4.

Пример 2

Делится ли числа 75 003 и −88 108 на 4?

Решение

Две последние цифры числа 75 003 — видим 03. Если отбросить ноль, то у нас остается цифра 3, которая на 4 без остатка не делится. Это значит, что исходное число 75 003 на 4 без остатка не делится.

Теперь возьмем две последние цифры числа −88 108. Это 08, из которых мы должны оставить лишь последнюю цифру 8. 8 делится на 4 без остатка.

Это значит, что и исходное число −88 108 мы можем поделить на 4 без остатка.

Ответ: 75 003 не делится на 4, а −88 108 – делится.

Числа, у которых в конце записи идет сразу два нуля, также делятся на 4 без остатка. Например, 100 делится на 4, получается 25. Доказать правдивость этого утверждения нам позволяет правило умножения числа на 100.

Представим произвольно выбранное многозначное число a, запись которого справа заканчивается двумя нулями, как произведение a1·100, где число a1 получается из числа a, если в его записи справа отбросить два нуля. Например, 486700=4867·100.

Произведение a1·100 содержит множитель 100, который делится на 4. Это значит, что все приведенное произведение делится на 4.

Математика 4 класс. Задачи, решения, ответы.

Задачи по математике 4 класс.

Задание 1:

В магазин привезли 32 коробки конфет, по 9 кг в каждой, и 36 коробок вафель, по 8 кг в каждой. Каких сладостей привезли больше и на сколько килограммов больше?

Решение:1) 32 * 9 = 288 2) 36 * 8 = 288
Ответ: В магазин привезли одинаковое количество конфет и вафель.

Задание 2:

С одного поля собрали 1 т 800 кг картофеля, а с другого — в 3 раза меньше. Весь картофель разложили в мешки, по 40 кг в каждый. Сколько мешков с картофелем получили?

Решение:1)1800 : 3 = 600 (со второго поля) 2) 1800 + 600 = 2400 (всего собрали картофеля) 3) 2400 : 40 = 60(мешков с картофелем получили)
Ответ: 60 мешков.

Задание 3:

  • 1) Вычисли периметр и площадь прямоугольника со сторонами 2 см и 4 см.
  • 2) Найди длину стороны квадрата, периметр которого равен периметру прямоугольника в задании 1).

Решение:1) 2 + 2 + 4 + 4 = 12 см (периметр прямоугольника), 2 * 4 = 8 квадратных сантиметра
2) 12 : 4 = 3 (длина стороны квадрата)

Задание 4:

Один мастер изготовил 6 ниток бус, по 38 бусинок в каждой, а другой — 7 ниток бус, по 36 бусинок в каждой. Какой мастер использовал больше бусинок и на сколько?

Решение:1) 6 * 38 = 228 (бусинки использовал 1 мастер) 2) 7 * 36 = 252 (бусинки использовал 2 мастер) 3) 252 — 228 = 24
Ответ: Второй мастер использовал на 24 бусинки больше чем первый.

Задание 5:

В первый день в санаторий приехало 900 человек, а во второй — в 9 раз меньше, чем в первый. Всех отдыхающих поселили в комнаты, по 2 человека в каждой. Сколько комнат заняли все отдыхающие?

Решение:1) 900 : 9 = 100 (отдыхающих приехало во второй день) 2) 900 + 100 = 1000 (отдыхающих приехало за 2 дня) 3) 1000 : 2 = 500 (комнат заняли все отдыхающие) Ответ: 500 комнат.

Задание 6:

  • 1) Вычисли периметр и площадь прямоугольника со сторонами 7 см и 3 см.
  • 2) Найди длину стороны квадрата, периметр которого равен периметру прямоугольника в № 1).

Решение:1) 7 + 7 + 3 + 3 = 20 см (периметр), 7 * 3 = 21 см квадратных (площадь)
2) 20 : 4 = 5(длина стороны квадрата)
Задачи повышенной сложности по математике 4 класс.

Задание 1:

Один токарь за смену изготовил 32 детали. Другой токарь, работая с той же производительностью, изготовил 24 детали. Сколько часов работал первый токарь, если известно, что второй токарь работал на 2 часа меньше, чем первый?

Решение:

Пусть первый токарь работал x часов. Тогда второй токарь работал (x — 2) часов. Первый токарь за час изготавливал (32/x) деталей, а второй токарь (24/(x — 2)). По условию задачи оба токаря работали с одинаковой производительностью. Это значит, что за 1 час они изготавливали одинаковое число деталей, поэтому мы можем записать и решить уравнение: 30/x = 24/(x — 2); 32*(x — 2) = 24 * x; 32x — 64 = 24x; 8x = 64; x = 8.Ответ: первый токарь работал 8 часов.

Задание 2:

Сложная задача по математике для 4 класса: Из двух городов по реке одновременно выплыли навстречу друг другу две моторные лодки. Скорость первой лодки 15км/ч, второй лодки 35км/ч. Первая лодка двигалась по течению реки. Скорость течения реки 5км/ч. Через сколько часов лодки встретились, если расстояние между городами 250км?

Решение:

Пусть до встречи лодок первая проплыла x км. Тогда вторая лодка проплыла (250 — x) км. Учитывая скорость течения реки, скорость первой лодки 15 + 5 = 20км/ч. Соответственно, скорость второй лодки 35 — 5 = 30км/ч. Очевидно, что время в пути до встречи одинаково, поэтому можно записать уравнение: x/20 = (250 — x)/30; x * 30 = 20 * (250 — x); 30x = 5000 — 20x; 50x = 5000; x = 100км.

Первая лодка до встречи со второй прошла 100км. Рассчитаем время: t = x/20 = 100/20 = 5ч.

Для проверки мы можем рассчитать время второй лодки: t = x/20 = (250 — x)/30 = 150/30 = 5ч. Ответ: лодки встретились через 5 часов.

Задания по математике 4 класс:

Тест 1       |       Тест 2       |       Тест 3       |       Тест 4       |       Тест 5

Движение навстречу друг другу

Если два объекта движутся навстречу друг другу, то они сближаются. Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:  

Задача 1Решение:Решение в виде выражения: 50 * (100 : 25) = 200Ответ
Задача 2

Решение:

1) 25 + 20 = 45 (сумма скоростей теплоходов)

2) 90 : 45 = 2

Решение в виде выражения:90 : (20 + 25) = 2

Ответ: Теплоходы встретятся через 2 часа.

Задача 3

От двух станций, расстояние между которыми 564 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 4 часа?

Решение:Ответ: Задача 4Решение:Ответ: Задача 5Решение:

2) 440:110=4 (ч) время, через которое поезда встретятся.

Ответ: Поезда встретятся через 4 часа.

Движение в противоположных направлениях

Если два объекта движутся в противоположных направлениях, то они удаляются. Чтобы найти скорость удаления, надо сложить скорости этих объектов:

Скорость удаления больше скорости любого из них.

Задача 1

Из поселка вышли одновременно в противоположных направлениях два пешехода. Средняя скорость одного пешехода – 5 км/ч, другого – 4 км/ч. Через сколько часов расстояние между ними будет 27 км ?

Решение:

Чтобы найти время движения пешеходов, нужно знать расстояние и скорость пешеходов. Мы знаем, что за каждый час один пешеход удаляется от поселка на 5 км, а другой пешеход удаляется от поселка на 4 км. Можем найти их скорость удаления.

1. 

Мы знаем скорость удаления и знаем все расстояние – 27 км. Можем найти время, через которое пешеходы удалятся друг от друга на 27 км, для этого нужно расстояние разделить на скорость.

2. 

Ответ: Через три часа расстояние между переходами будет 27 км.

Задача 2

Из поселка вышли одновременно в противоположных направлениях два пешехода. Через 3 часа расстояние между ними было 27 км. Первый пешеход шел со скоростью 5 км/ч. С какой скоростью шел второй пешеход ?

Решение:

Чтобы узнать скорость второго пешехода, надо знать расстояние, которое он прошел, и его время в пути. Чтобы узнать, какое расстояние прошел второй пешеход, надо знать, какое расстояние прошел первый пешеход и общее расстояние. Общее расстояние мы знаем. Чтобы найти расстояние, которое прошел первый пешеход, надо знать его скорость и его время в пути. Средняя скорость движения первого пешехода – 5 км/ч, его время в пути – 3 часа. Если среднюю скорость умножить на время в пути, получим расстояние, которое прошел пешеход:

1. 

Мы знаем общее расстояние и знаем расстояние, которое прошел первый пешеход. Можем теперь узнать, какое расстояние прошел второй пешеход.

2. 

Теперь мы знаем расстояние, которое прошел второй пешеход, и время, проведенное им в пути. Можем найти его скорость.

3. 

Ответ: Скорость второго пешехода – 4 км/ч.

Задача 3

Товарный и пассажирский поезда движутся в противоположных направлениях. Скорость товарного 45 км/ч, скорость пассажирского — 70 км/ч. Сейчас между ними 20 км. Какое расстояние будет между ними через 2 часа ?

Решение:

1) 70+45=115 (км/ч) скорость удаления поездов

2) 115∙2=230 (км) пройдут поезда вместе за 2 часа

3) 230+20=250 (км) такое расстояние между поездами будет через 2 часа.

Ответ: Через 2 часа расстояние между поездами составит 250 км.

Задача 4

Из одного пункта одновременно в противоположных направлениях выехали два мотоциклиста. Скорость одного из них — 60 км/ч, скорость другого — 40 км/ч. Через какое время расстояние между ними станет равным 300 км?

Решение:

1) 60+40=100 (км/ч) скорость удаления мотоциклистов

2) 300:100=3 (ч) через такое время расстояние между ними будет 300 км.

Задачи на встречное движение

1. Из двух городов одновременно вылетели навстречу друг другу два голубя. Они встретились через 5 ч. Скорость одного голубя 62 км/ч, а второго 68 км/ч. Узнай расстояние между городами.2. Из двух посёлков одновременно выехали навстречу друг другу велосипедист и мотоциклист. Они встретились через 4 ч. Скорость велосипедиста 15 км/ч, а мотоциклиста 57 км/ч. Узнайрасстояние между посёлками.3. От двух пристаней одновременно навстречу друг другу отошли катер и лодка. Они встретились через 6 ч. Скорость лодки 8 км/ч, а скорость катера 35 км/ч. Узнай расстояние между пристанями.4. Две морские звезды одновременно поползли из своих укрытий навстречу друг другу. Первая ползла со скоростью 5 дм/ч, а вторая со скоростью 4 дм/ч. Встретились они через 2 ч. Узнай расстояние между укрытиями морских звёзд. 5. Две девочки вышли одновременно навстречу друг другу из своих домов. Они встретились через 8 мин. Одна шла со скоростью 60 м/мин, а другая со скоростью 70 м/мин. Каково расстояние между домами девочек?6. Два автомобилиста выехали одновременно из двух городов навстречу друг другу. Скорость одного автомобилиста 80 км/ч, а скорость другого 100 км/ч. Узнай расстояние между городами, если автомобилисты встретились через 3 ч.7. Две гремучие змеи выползли одновременно из своих укрытий навстречу друг другу и встретились через 5 мин. Скорость одной змеи 48 м/мин, а скорость другой 53 м/мин. Каково расстояние между укрытиями змей?8. Из двух гнёзд одновременно навстречу друг другу вылетели два ястреба. Встретились они через 6 с. Скорость одного ястреба 6 м/с, скорость другого 16 м/с. Каково расстояние между гнёздами ястребов?9. Из двух городов навстречу друг другу одновременно выехали два мотоциклиста. Встретились они через 4 ч. Скорость одного мотоциклиста 85 км/ч, скорость другого 95 км/ч. Каково расстояние между городами?10. Два пешехода вышли одновременно из двух деревень навстречу друг другу. Один шёл со скоростью 5 км/ч, скорость другого 4 км/ч. Через сколько часов они встретятся, если расстояние между деревнями 36 км?

Доказательство признака делимости на 4

Представим любое натуральное число a в виде равенства a=a1·100+a, в котором число a1 – это число a, из записи которого убрали две последние цифры, а число a – это две крайние правые цифры из записи числа a. Если использовать конкретные натуральные числа, то равенство будет иметь вид undefined. Для одно- и двузначных чисел a=a.

Определение 1

Теперь обратимся к свойствам делимости: 

  • деление модуля числа a на модуль числа b необходимо и достаточно для того, чтобы целое число a делилось на целое число b;
  • если в равенстве a=s+t все члены, кроме одного делятся на некоторое целое число b, то и этот оставшийся член делится на число b.

Теперь, освежив в памяти необходимые свойства делимости, переформулируем доказательство признака делимости на 4 в виде необходимого и достаточного условия делимости на 4.

Теорема 1

Деление двух последних цифр в записи числа a на 4 – это необходимое и достаточное условие для делимости целого числа a на 4.

Доказательство 1

Если предположить, что a=, то теорема в доказательстве не нуждается. Для всех остальных целых чисел a мы будем использовать модуль числа a, который является числом положительным:a=a1·100+a

С учетом того, что произведение a1·100всегда делится на 4, а также с учетом свойств делимости, которые мы привели выше, мы можем сделать следующее утверждение: если число a делится на 4, то и модуль числа a делится на 4, тогда из равенства a=a1·100+a следует, что a делится на 4. Так мы доказали необходимость.

Из равенства a=a1·100+a следует, что модуль a делится на 4. Это значит, что и само число a делится на 4. Так мы доказали достаточность.

Сложносочиненное предложение

Сложносочиненным (ССП) называют сложное предложение, имеющее два и более независимых простых предложений в составе. Это значит, что их можно разбить точкой, при этом смысл не потеряется.

Части таких сложных предложений связаны союзами и союзными словами: соединительными (и, да, также и т. д.), противительными (а, но, зато и т. д.), разделительными (либо, то… то, не то… не то и т. д.) или их комбинациями.

Примеры:

  • Хотелось пирога, и яблоки уже созрели.

  • Хотелось пирога, но яблоки еще не созрели.

  • То мать пирогов напечет, то бабушка с булочками приедет.

Иногда части сложносочиненных предложений связаны без сочинительного союза и союзного слова — по смыслу. Такие предложения называют бессоюзными.

Пример:

Лето заканчивалось лихо: на улице резко похолодало, листья начали алеть и чахнуть.

Знаки препинания в сложносочиненных предложениях

В предложениях с союзами и, да, однако, либо и т.д. принято ставить запятую. Кроме случаев, когда:

Исключение
Если у частей сложного предложения есть общий второстепенный член или придаточное, но их соединяет повторяющийся союз, нужно ставить запятую.

Пример:

На ярмарке в городе показывали кукольные представления, и торговцы продавали сахарную вату, и зазывалы кричали приглашения на аттракционы.

В бессоюзных сложносочиненных предложениях части делятся не только запятыми, но и тире, двоеточиями и точкой с запятой. Эту тему мы подробно разобрали в статье о сложносочиненных предложениях.

Математика 4 класс

Варианты контрольных работ:Контрольная работа №1   |   № 2   |   № 3

Задачи по математике для 4 класса:Задачи по математике 4 класс

Олимпиадные задания 4 класс:Олимпиадные задания с ответамиЗадачи олимпиад по математике 4 классШкольная олимпиада 4 класс с решением

Краткая история математики

Академиком А. Н. Колмогоровым предложена такая структура истории математики:
— Период зарождения математики, на протяжении которого был накоплен достаточно большой фактический материал;- Период элементарной математики, начинающийся в VI — V веках до н. э. и завершающийся в конце XVI века («Запас понятий, с которыми имела дело математика до начала XVII века, составляет и до настоящего времени основу „элементарной математики“, преподаваемой в начальной и средней школе»);- Период математики переменных величин, охватывающий XVII — XVIII века, «который можно условно назвать также периодом „высшей математики“»;- Период современной математики — математики XIX — XX века , в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».

Задачи на движение 4 класс

Задача 1

Грузовик в первый день проехал 600 км, а во второй день 200 км. Весь путь занял 8 часов. Сколько часов в день проезжал грузовик, если он ехал все время с одинаковой скоростью.

Задача 2

Велосипедист проезжает путь из города в поселок, со скоростью 17 км/час, за 5 часов. Сколько времени потребуется пешеходу, что бы пройти этот же путь, если он движется со скоростью 5 км/час?

Задача 3

Автомобиль проехал 400 километров. Двигаясь со скоростью 60 км/час, он проехал за 2 часа первую часть пути. С какой скоростью он двигался остальную часть пути, если он затратил на нее 4 часа?

Задача 4

Скворец летел со скоростью 75 км/час 2 часа. С какой скоростью летит ворона, если такое же расстояние она пролетит за 3 часа?

Задача 5

Автотуристы были в пути 15 часов в течение 2 дней. 420 километров они проехали в первый день и 480 во второй. Сколько часов каждый день они были в пути, если каждый день они двигались с одинаковой скоростью?

Задача 6

От города до поселка 37 километров, а от этого поселка до следующего 83 км. Сколько времени понадобиться, что бы доехать от города до последнего поселка, если двигаться со скоростью 40 км/час?

Задача 7

За 3 часа катер преодолел расстояние в 210 км. Какое расстояние оно пройдет за 5 часов, если его скорость увеличится на 5 км/час?

Задача 8

Теплоход за 9 часов прошел 360 км в первый день. Во второй день теплоход с прежней скоростью был в пути 12 часов. Сколько всего километров преодолел теплоход за 2 дня?

Задача 9

Вертолет пролетает за 4 часа 960 километров. Сколько времени понадобится самолету, чтобы пролететь то же расстояние, если он движется в 2 раз быстрее?

Задачи на нахождение площади

1. Найдите площадь и периметр прямоугольника со сторонами 8 см и 9 см. 679. Длина прямоугольника 7 дм, ширина 3 дм. Чему равны площадь и периметр прямоугольника?2. Площадь фундамента дома квадратной формы 64 кв. м. Чему равен периметр дома?3. Длина прямоугольника 6 дм, ширина 4 см. Чему равны площадь и периметр прямоугольника?4. Длина прямоугольника 4 м, ширина 3 дм. Чему равны площадь и периметр прямоугольника? 5. Ширина вагона 3 м, а длина 750 см. Чему равны площадь и периметр вагона?6. Высота зеркала 180 см, ширина 70 см. Чему равны площадь и периметр зеркала?7. Длина прямоугольника равна стороне квадрата с периметром 48 см, а ширина его в 4 раза меньше. Чему равны площади прямоугольника и квадрата?8. Чему равны площади всех возможных прямоугольников с периметром 18 см, если длина их сторон выражена целым числом сантиметров. У какого прямоугольника площадь наибольшая?9. Детская площадка была длиной 16 м и шириной 14 м. После переделки её увеличили в длину на 4 м и уменьшили в ширину на 3 м. Как изменилась площадь детской площадки?10. Сколько краски пойдёт на окраску пола длиной 8 м и шириной 6 м, если на окраску 1 кв. м требуется 150 г краски?

Простые задачи на движение

1. Мотоциклист за 4 ч проехал 320 км. С какой скоростью ехал мотоциклист?2. Самолёт пролетел 1800 км за 3 ч. С какой скоростью летел самолёт?3. Комар пролетел 16 дм со скоростью 4 дм/с. Сколько времени комар был в полёте?4. Катер за 3 ч проплыл 96 км. С какой скоростью плыл катер?5. Почтовый голубь за 3 ч пролетел 270 км. С какой скоростью летел почтовый голубь?6. За 4 с бегемот пробежал 48 м. С какой скоростью бежал бегемот?7. Товарный поезд за 2 ч проехал 70 км. С какой скоростью шёл поезд?8. Паук за 2 с пробежал 60 см. С какой скоростью бежал паук?9. Жук за 2 ч пролетел 22 км. С какой скоростью летел жук?10. Лыжник со скоростью 8 км/ч прошёл дистанцию 24 км. За сколько времени лыжник прошёл эту дистанцию?

Классы чисел

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.

Таблица классов:

Названия классов многозначных чисел справа налево:

  • первый — класс единиц,
  • второй — класс тысяч,
  • третий — класс миллионов,
  • четвертый — класс миллиардов,
  • пятый — класс триллионов,
  • шестой — класс квадриллионов,
  • седьмой — класс квинтиллионов,
  • восьмой — класс секстиллионов.

Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:

125 911 723 296.

А теперь прочитаем число единиц каждого класса слева направо:

125 миллиардов 911 миллионов 723 тысячи 296.

Когда читаем класс единиц, добавлять слово «единиц» в конце не нужно.

Понятие уравнения

Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Примеры для устного счёта 4 класс

53+47:2-41х3

56:8х10-16:6

74-66х4+48:8

89-68:7х9+78

94-87х3-15:6

4х7+28:8х9

9х5-39х4+36

72:8х6+27:9

40:5+79-69:3

63:9+25:8х20

85-37:4х5+58

8х9-16:7х6

6х5х3-72:2

100-46:9х7+39

100-73:3х5+47

7х9-39:8х30

93-58:5х3+79

4х9+18:6+87

40х2-56:4х3

6х8+33:9х8

17+15:4+67+25

80-35:9х7+65

7х1+86-79:7

63:7х8-36:9

4х8+17:7+83

100-51:7х9-63

36:6х8+24:9

56:8х6-35:7

2х7+86:20х9

8х7-29:9-3

17+46:7+40-37

72:9+72:80х8

7х8+25:9+91

17+64:9х6-29

6х4+48:8х9

32:8х6+48:9

9х7-27:6х8

6х9-26:7х9

3х9+45:8+71

93-58:7х9+55

100-37:9х7+25

27:3+89-69х2

43+29:9х6+46

36:4х5-28+14

21:3х2+67-39

9х2:3+89-14

7х5-19+74:9

9х3+56-37:2

25:5х20-33+9

24:3х5х2-47

45:5х4+59-17

40:8х4+76-25

8х1+75-26:3

18:3х4+76-66

6х4+49-35:19

6х3+47-29:9

20:4х8-23+41

14:2х5+58-61

9х4-19+46:21

7х3+69-73х2

28:4х5+39-55

7х4+72-56:11

8х3:4+75-24

32:4+67-49х3

35:5+65-58х4

6х3:2+46-37

3х7+69-65:5

56:7х9-43+17

9х6-19+49:4

54:9х6+57-19

20:5х6+56:20

15:5х3+21-17

Задачи на пропорциональное деление

1. Собрали 640 кг груш и яблок с каждого дерева поровну. Сколько килограммов груш и сколько килограммов яблок собрали, если обработали 7 яблонь и 9 груш?2. В двух книгах 399 страниц. Первую книгу девочка читала 12 дней, а вторую 7 дней, прочитывая каждый день одинаковое количество страниц. Сколько страниц в каждой книге?3. За два дня мастер отремонтировал 28 телевизоров. В первый день он работал 8 ч, а во второй 6 ч. Сколько телевизоров он отремонтировал в каждый из этих дней?4. Купили 84 красных и зелёных перцев и разложили в банки для консервирования: по 4 красных и по 2 зелёных перца в банку. Сколько всего было красных и сколько всего было зелёных перцев? 5. Две бригады работали одинаковое время и заработали вместе 720 руб. Как они должны разделить этот заработок, если в одной бригаде было 5 человек, а в другой 3 человека?6. Сапожник отремонтировал 48 пар обуви за несколько дней: по 2 женские и по 4 мужские пары каждый день. Сколько было отремонтировано мужских и сколько женских пар обуви?7. Девочка сделала несколько венков из незабудок и колокольчиков. В каждом венке было 18 незабудок и 7 колокольчиков. Сколько у неё незабудок и сколько колокольчиков, если общее количество цветков 150?8. В группах детского сада всего 150 детей. В каждой группе по 14 девочек и 16 мальчиков. Сколько девочек и сколько мальчиков в детском саду?9. В нескольких дворах посадили 48 деревьев: по 3 берёзы и 5 лип в каждом дворе. Сколько посадили берёз и сколько лип?10. Для участия в спартакиаде от нескольких школ выделили по 42 бегуна и 24 прыгуна в высоту. Всего было 396 участников. Сколько было бегунов и сколько прыгунов в высоту?

Порядок вычислений в выражениях со скобками

Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:

Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.

Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.

Рассмотрим порядок выполнения действий на примерах со скобками.

Пример 1. Вычислить: 10 + (8 — 2 * 3) * (12 — 4) : 2.

Как правильно решить пример:

Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.

Начнем с первого 8 — 2 * 3. Что сначала, умножение или вычитание? Мы уже знаем правильный ответ: умножение, затем вычитание. Получается так:

8 — 2 * 3 = 8 — 6 = 2.

Переходим ко второму выражению в скобках 12 — 4. Здесь только одно действие – вычитание, выполняем: 12 — 4 = 8.

Подставляем полученные значения в исходное выражение:

10 + (8 — 2 * 3) * (12 — 4) : 2 = 10 + 2 * 8 : 2.

Порядок действий: умножение, деление, и только потом — сложение. Получится:

10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.

На этом все действия выполнены.

Ответ: 10 + (8 — 2 * 3) * (12 — 4) : 2 = 18.

Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.

Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).

Как решаем:

Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:

2 + 3 = 5.

Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:

5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.

Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.

Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector