Счет до 10 для детей — задания для распечатки

Табличное сложение

Прежде чем познакомиться с таблицами сложения чисел, мы рассмотрим случаи сложения разных видов.

Например, 7 + 6 = ?

Мы видим, что сумма будет больше 10, потому что 10 — это 7 и 3. Мы будем прибавлять число 6 по частям.

  • Сначала прибавляем столько, чтобы полу­чить 10:   7 + 3 = 10.
  • Дальше мы вспоминаем, что 6 — это 3 и 3.
  • Число 3 мы уже прибавили, значит, надо прибавить ещё 3:  10 + 3 = 13.
  • Тогда наш пример 7 + 6 можно записать по-другому: 

или так:

Значит, 7 + 6 = 13

Рассуждая так, можно решить любой пример на сложение в пределах 20.

Случаи табличного сложения

  1. 11 — это 1 и 10
  2. 11 — это 2 и 9
  3. 11 — это 3 и 8
  4. 11 — это 4 и 7
  5. 11 — это 5 и 6
  6. 12 — это 2 и 10
  7. 12 — это 3 и 9
  8. 12 — это 4 и 8
  9. 12 — это 5 и 7
  10. 12 — это 6 и 6
  11. 13 — это 3 и 10
  12. 13 — это 4 и 9
  13. 13 — это 5 и 8
  14. 13 — это 6 и 7
  15. 14 — это 4 и 10
  16. 14 — это 5 и 9
  17. 14 — это 6 и 8
  18. 14 — это 7 и 7
  19. 15 — это 5 и 10
  20. 15 — это 6 и 9
  21. 15 — это 7 и 8
  22. 16 — это 6 и 10
  23. 16 — это 7 и 9
  24. 16 — это 8 и 8
  25. 17 — это 7 и 10
  26. 17 — это 8 и 9
  27. 18 — это 8 и 10
  28. 18 — это 9 и 9
  29. 19 — это 9 и 10

Таблицы сложения

Таблица сложения нужна, чтобы научиться быстрому сложению чисел.

Существует несколько таблиц сложения чисел. Одна из первых таблиц такого рода — таблица сложения в пределах 10, но если ты хорошо знаешь состав чисел, тебе она не понадобится.

Как пользоваться такой таблицей?

Например, тебе нужно узнать, сколько будет 4 + 5.

Есть очень простая таблица сложения чисел с переходом через десяток. Вот она.

Пользоваться ею, конечно, очень легко.

Но наиболее полная таблица сложения чисел в от 1 до 20 представлена ниже.

Как ею пользоваться? Очень просто.

Например, тебе нужно к 7 + 6:

А это сводная таблица, которой можно прользоваться, пока не заучишь её наизусть.

А такими таблицами можно пользоваться при заучивании результатов сложения наизусть.

Письменное сложение в столбик

Сложение

Правило встречается в следующих упражнениях:

1 класс

  1. Страница 76, Моро, Волкова, Степанова, Учебник, 2 часть
  2. Страница 77, Моро, Волкова, Степанова, Учебник, 2 часть
  3. Страница 85, Моро, Волкова, Степанова, Учебник, 2 часть
  4. Страница 104, Моро, Волкова, Степанова, Учебник, 2 часть
  5. Страница 12, Моро, Волкова, Рабочая тетрадь, 2 часть
  6. Страница 38, Моро, Волкова, Рабочая тетрадь, 2 часть
  7. Страница 40, Моро, Волкова, Рабочая тетрадь, 2 часть
  8. Страница 44, Моро, Волкова, Рабочая тетрадь, 2 часть
  9. 2 класс
  10. Страница 74, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
  11. Страница 94, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
  12. Задание 2, Моро, Волкова, Рабочая тетрадь, 1 часть
  13. Задание 52, Моро, Волкова, Рабочая тетрадь, 1 часть
  14. Задание 132, Моро, Волкова, Рабочая тетрадь, 1 часть
  15. Задание 144, Моро, Волкова, Рабочая тетрадь, 1 часть
  • Страница 81, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
  • Страница 98, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
  • Страница 48, Моро, Волкова, Рабочая тетрадь, 2 часть
  • 3 класс
  • Страница 5, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
  • Страница 8, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
  • Страница 30, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
  • Страница 31, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
  • Страница 64, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
  • Страница 6, Моро, Волкова, Рабочая тетрадь, 1 часть
  • Страница 11, Моро, Волкова, Рабочая тетрадь, 1 часть
  • Страница 4, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
  • Страница 14, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
  • Страница 7, Моро, Волкова, Рабочая тетрадь, 2 часть
  • 5 класс
  • Упражнение 166, Мерзляк, Полонский, Якир, Учебник
  1. budu5.com, 2020
  2. Пользовательское соглашение
  3. Copyright
  4. Нашли ошибку?
  5. Связаться с нами

Чего не следует делать при обучении счету

Правильно сформированные арифметические умения являются основой полноценного интеллектуального развития ребенка, поэтому категорически не рекомендуется использовать методики, которые могут негативно сказаться на мышлении и памяти. Например, злоупотребление счетом на пальцах не требует развития пространственного запоминания количества предметов. Такой способ помогает наиболее быстро ознакомиться с цифрами.

Обучение счету с помощью палочек и записей примеров может также привести к отрицательным эффектам в виде привычки считать медленно, складывая и вычитая только по единице. Если слишком часто использовать данный метод, то тормозится развитие умения складывать по числовым группам.

Счет с помощью линейки помогает изучить ребенку понятие «числового ряда». Этот метод тренирует понимание сути складывания и вычитания. С другой стороны, данная методика абсолютно не тренирует память.

При обучении малыша категорически не рекомендуется использовать сложные термины, поскольку для маленького ученика будет сложно понять суть заданий. Нужно подробно объяснить значение каждого слова.

Основные свойства суммы натуральных чисел

Есть два основных закона суммы, из которых следуют остальные ее свойства:

  • переместительный закон сложения,
  • сочетательный закон сложения.

закон сложения

Сумма двух или нескольких чисел от изменения порядка сложения слагаемых не меняется. Это значит, что значение суммы не зависит от порядка выполнения действия сложение.

Например, в каком бы порядке мы ни складывали числа 2, 3 и 5, результат неизменно будет 10:

закон сложения

Сумма нескольких чисел не поменяется, если некоторые слагаемые заменить их суммой. Это значит, что мы можем группировать слагаемые как угодно, а также выполнять действия сложения в любом порядке.

Например, если в нашем примере мы заменим слагаемые 2 и 3 их суммой, то результат останется такой же, как и при обычном сложении слагаемых:

То же самое будет, если мы заменим слагаемые 3 и 5, или 2 и 5 их суммами:

или

Из этих законов вытекает правило прибавления слагаемого к сумме или суммы к слагаемому.

Правило

Для прибавления суммы некоторых чисел к числу или некоторого числа к сумме чисел, нужно сложить это число с одним из слагаемых суммы, а получившийся результат сложить последовательно с остальными слагаемыми.

Пример 1. Прибавление числа к сумме чисел:

Можно сразу вычислить сумму чисел в скобках и сложить ее с первым слагаемым:

325+(12+64+5) = 325+81 = 406

Также можно использовать правило прибавления слагаемого и суммы. Результат при этом не поменяется

325+12 = 337;337+64 = 401;401+5 = 406или325+64 = 389;389+12 = 401;401+5 = 406.

Пример 2. Прибавление суммы чисел к другому числу:

Можно сразу вычислить сумму чисел в скобках и сложить ее со вторым слагаемым

(54+240+189)+37 = 483+37 = 520

Или можно использовать правило прибавления суммы чисел к числу. Результат останется тот же.

54+37 = 91;91+240 = 331;331+189 = 520или240+37 = 277;277+54 = 331;331+189 = 520.

Изменение суммы чисел с изменением слагаемых

Чтобы понять, как изменится сумма чисел, если изменить одно или несколько ее слагаемых, нужно вспомнить, что сумма представляет собой собрание всех единиц, из которых состоят слагающие ее числа. Поэтому, легко можно понять, что:

При увеличении одного из слагаемых на какое-то число (на какое-то количество единиц), сумма тоже увеличится на это же число (на это же количество единиц).

При уменьшении одного из слагаемых на какое-то число (на какое-то количество единиц), сумма тоже уменьшится на это же число (на это же количество единиц).

Эти два свойства справедливы и в обратную сторону. То есть, если увеличить или уменьшить сумму на какое-то число, тогда для сохранения равенства нужно соответственно увеличить или уменьшить одно из слагаемых.

Если увеличить одно из слагаемых на какое-то число (на какое-то количество единиц), а другое уменьшить на это же число (на это же количество единиц), то в результате сумма .

Простой пример увеличения суммы при увеличении слагаемого: у вас есть 700 рублей; 200 рублей лежит в левом кармане, а 500 – в правом. Вы нашли на улице 300 рублей и положили их в левый карман, после чего там стало 200+300=500 рублей. Таким образом, всего у вас оказалось 500+500=1000 рублей, то есть, сумма всех ваших денег увеличилась на 300 рублей.

Попробуйте самостоятельно придумать примеры для всех трех правил.

9 + 2 =

Сначала нужно дополнить первое слагаемое – число 9 – до 10. Для этого представим второе слагаемое — число 2 в виде суммы двух удобных чисел.

Давай прогуляемся в город и найдем дом с номером 10.

На одном этаже с числом 9 живет 1. Значит первое число, которым мы представим второе слагаемое 2, будет 1.

Чтобы найти пару, посмотрим на дом под номером 2 (это наше второе слагаемое).

Посмотри, кто живет на одном этаже с числом 1?

Правильно, число 1. Это наше второе число.

А теперь все быстро посчитаем: 9 плюс 1 будет 10. Затем к 10 прибавим еще 1 – получим 11.

Вот и все. Мы составили таблицу сложения однозначного числа с числом 2.

Приступим к решению примеров, в которых вторым слагаемым является 3.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Таблица умножения

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число — результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

  • 5+4=9
  • 54*11=594

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами — эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

  • 7*8=56
  • 5*5=25
  • 75*75=5625

Раньше все считали без калькуляторов

Приемы сложения и вычитания вида□ + 6, 7, 8, 9, □–6, 7, 8, 9

Поселились все зверюшки вместе в теремке. И дружно вместе принялись записывать остальные таблицы. Все примерах в них составляются на основе тех правил, о которых напомнила нам лисичка. Давай поможем им.

Начнем с таблицы сложения числа 6.

В предыдущих таблицах есть только четыре примера, в которых встречается слагаемое 6. Найди их.

Вот что выписали зверята.

Теперь переставляем слагаемые местами.

А теперь из этой таблицы мы легко можем составить таблицу вычитания числа 6. Попробуй сделать это самостоятельно.

Посмотри, какую таблицу вычитания числа 6 записали наши друзья.

Вот мы и закончили! У нас получилось составить таблицы сложения и вычитания числа 6.

Продолжаем. С таблицей сложения числа 7 нам повезло еще больше, ведь в ней будет всего три примера. Ты уже нашел их? Вот что записали зверята.

Надеюсь, ты не забыл еще переместительное свойство действия сложения, ведь оно нам пригодится при составлении таблицы с числом 7.

Подумай над этим сам. А потом проверь.

Все правильно. Теперь из предыдущей таблицы составим таблицу вычитания числа 7.

Не спеши, сделай это самостоятельно.

Проверь свою таблицу.

Как быстро ты со всем справился.

Дальше будет еще легче. Вспомни примеры, где встречается слагаемое 8.

В таблице сложения числа 8 всего два примера. Составь их.

Давай проверим.

Теперь составь таблицу вычитания числа 8.

Вот что получилось у наших друзей.

Вот мы и выучили таблицы сложения и вычитания с числом 8.

Ты, наверное, уже немного устал. Но нам осталось познакомиться всего с одной таблицей. Это таблица сложения и вычитания с числом 9.

Ты уже нашел пример с числом 9? Уверена, что ты справился. Назови его.

9 + 1 = 10

Давай переставлять. Что у нас получится?

1 + 9 = 10

Вот и вся таблица сложения с числом 9. Переходим к таблице вычитания числа 9.

У тебя уже все готово?

Правильно.

10 − 9 = 1

Мы с тобой неплохо потрудились и составили все таблицы в пределах 10. Вот как выглядит общая таблица сложения.

В этой таблице красным цветом выделены примеры, которые составлены путем перестановки слагаемых. Их запомнить очень легко.

А вот общая таблица вычитания чисел в пределах 10.

В этой общей таблице хорошо видны несколько закономерностей, которые помогут тебе лучше и быстрее запомнить результаты указанных математических выражений на вычитание.

  1. В результате вычитания числа 1 получается число, которое является предыдущим по отношению к уменьшаемому.
  2. В примерах, где уменьшаемое и вычитаемое являются «соседями» в натуральном ряду чисел, разность равна 1.
  3. В таблице есть «парные» примеры, которые можно составить из одного и того же примера на сложение.

В этих выражениях компонентами являются одни и те же числа. Присмотрись и найди другие подобные пары примеров.

Чтобы получше запомнить все примеры из таблиц сложения и вычитания чисел в пределах 10, почаще тренируйся. Не забудь о наших сегодняшних помощниках.

Таблицы сложения и вычитания числа 1 мы выучили с помощью мышки, которая переходила маленькими шагами с числа на соседнее число. Как найти результаты в таблицах сложения и вычитания числа 2 нам подсказала лягушка, которая умеет прыгать через число. Зайчик показал, как узнать ответы в примерах из таблиц сложения и вычитания числа 3, который скачет так высоко, что может перепрыгнуть через два числа сразу. А двойной прыжок лягушки поможет вспомнить результаты таблиц сложения и вычитания числа 4. Лисичка же разгадала закономерности составления всех остальных таблиц.

Обязательно используй все приемы, которые нам подсказали герои нашей сказки. Чем чаще ты будешь повторять примеры из таблиц, тем быстрее ты запомнишь результаты каждого из них. Надеюсь, ты легко справишься с проверочными заданиями к этому уроку.

Свойства вычитания

Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.

Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.

Уменьшаемое — это число, из которого вычитают.

Вычитаемое — это число, которое вычитают.

Разность — это число, которое получается в результате вычитания.

Рассмотрим пример 9 — 4 = 5, в котором:

9 — это уменьшаемое,

4 — вычитаемое,

5 — разность.

При этом саму запись (9 — 4) тоже можно назвать разностью.

Свойства вычитания

  1. Свойство нуля при вычитании
    Если из числа вычесть нуль, получится само число.
    a — 0 = a
    Если из числа вычесть само число, то получится нуль.
    a — a = 0
  2. Свойство вычитания суммы из числа
    Чтобы вычесть сумму из числа, можно вычесть из этого числа одно слагаемое, из полученной разности — второе слагаемое.
    a — (b + c) = a — b — c
  3. Свойство вычитания числа из суммы
    Чтобы вычесть число из суммы, можно вычесть его из одного слагаемого, а к результату прибавить оставшееся слагаемое.
    (a + b) — c = (a — c) + b (если a > c или а = с)
    (a + b) — c = (b — c) + a (если b > c или b = с)

На заметку!
Есть случаи, когда скобки не имеют значения при вычитании, и их можно опустить. Например: (a — b) — c = a — b — c.

Самый быстрый технологический приём запоминания таблицы сложения или состава чисел

Здравствуйте, сегодня расскажу о самом удобном, быстром способе запоминания состава чисел, либо таблицы сложения и вычитания (как в пределах 10, так и в пределах 20)

В предыдущих статьях я рассказывала о самых продуктивных играх по математике для 1 класса.

Игры играми, а когда приходит время и просто необходимо уже знать таблицу сложения вашему ребёнку, тогда и помогут вам тренировки с СОРБОНКАМИ.

Чем они хороши? А тем, что не нужно каждый раз говорить ребёнку «Учи таблицу!» Ну вроде выучил. А стали проверять-пара неправильных ответов- опять: «Учи, кому говорю, опять не выучил!»

Так вы и не знаете, КАКИЕ ИМЕННО ВАРИАНТЫ ПРИМЕРОВ ОН НЕ ВЫУЧИЛ. И у ребенка стресс- он никак не может это выучить! Неправда!. Что-то же он знает! Вот это «что-то» и надо найти, похвалить и учить не всё подряд снова, а только то, что не знает. Вот таким «методом исключения» и тренируем ребенка с помощью сорбонок.

Ещё чем хороши сорбонки?? Примеры всегда перед глазами, ответы тоже, в процессе игры- ребенок всё выучит.

В этом приёме содержится мониторинг с корректировкой результатов.

Сорбонкиэто небольшие карточки из плотной бумаги, на одной стороне записан вопрос (слово), а на другой ответ(картинка, перевод). Сорбонки- от названия Парижского университета Сорбон. Может использоваться на любых уроках. В начальных классах очень удобно применять в математике и при изучении иностранных слов.

Подписывайтесь на канал, вас ждт ещё много интересного, ставьте «ВО!», если статья понравилась, комментируйте, спрашивайте, отвечу!м. На длинной стороне пишем пример и знак =, на короткой -ответ. Либо просто два числа на длинной стороне как состав числа, которое написано справа . Заворачиваем ответы вниз.

Играем-тренируемся. Складываем стопкой примеры. Показываем их по очереди. Если ребёнок ответил правильно, показываем ответ и откладываем в одну сторону сорбонку, если неправильно, разворачиваем ответ и откладываем в другую сторону.

Учим тут же. Теперь берем ТОЛЬКО те сорбонки, которые ребёнок только что учил. Опять играем точно так же.

Осталось меньше примеров, которые никак не запоминаются? Ура! Берём только их для заучивания. Заучиваем, разворачивая сорбонки. И так играем до тех пор, пока не останется ни одной сорбонки, которые ребёнок не знает. Выучили? УРА! Играем и завтра, уже веселее !.

А в дальнейшем играем просто, чтобы показать знания ребёнка. Для удовольствия. Можно играть в классе на перемене с друзьями.

Подписывайтесь на канал, вас ждёт ещё много интересного, ставьте «ВО!», если статья понравилась, комментируйте, спрашивайте, отвечу!

Игры и упражнения для обучения счёту

Лего

Собирайте с ребёнком башни из определённого количества кубиков, чтобы научить считать. Позже лего понадобится в освоении дробей.

Раскраски с примерами

Научить ребёнка складывать и  вычитать можно через раскраски, где в каждой ячейке написан пример, решив который ребёнок узнает цвет.

Настольная игра «Земляничные тропинки»

В игре два вида карточек: «Сбор ягод» и «Делимся ягодами». В первом случае нужно нанизывать какое-то количество на свою нитку, а во втором — вычитать, то есть отдавать. В процессе нужно пересчитывать ягодки и сравнивать.


‍ Игра «Земляничные тропинки» ‍

Домино с цифрами

Принцип такой же, как с картинками. Одно домино с двумя числами по краям выкладывает ребёнок, родитель подбирает плашку с одним из чисел. Выиграет тот, кто раньше всех избавится от домино.

<<Форма курс 1-4>>

UNO

Игра на закрепление цветов и цифр. У каждого игрока есть по семь карт. Верхняя карта колоды переворачивается, и все по кругу должны класть сверху карту или того же цвета, или с такой же цифрой.

Настольная игра «Фрукто 10»

Нужно наперегонки искать подходящие фрукты с числами. Поможет тренировать навык беглого счёта и внимательность.


‍Игра «Фрукто 10»  

Считаем и решаем примеры до 20

Когда счет до 10 был освоен и ребенок стал свободно ориентироваться в первой десятке цифр, наступает время переходить на новый этап и обучаться двузначным числам, считать примеры в пределах 20.

Запоминаем цифры

Чтобы ребенок хорошо запоминал последовательность цифр, лучше всего использовать 20 одинаковых предметов (это даст возможность наглядно все объяснять малышу) или опять же карточки с числами.

Выглядеть это будет так:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

Поясняем ребенку, что в числах после 10 есть сходство. Визуализируя таким образом числа и десятки, вы поможете ребенку эффективнее запомнить их последовательность и названия. Видим число 11 – говорим «один» и прибавляем окончание «надцать». Так же поступаем и с другими двузначными числами – «три-надцать», «пять-надцать», «шесть-надцать» и т. д.

Работайте с ребенком на повторение, пока он не запомнит названия чисел.

Решаем примеры

Прежде чем приступить к решению примеров и обучению в пределах двадцати, дошкольник должен уяснить такие понятия, как «десятки» и «единицы». Для начального этапа обучения можно использовать кубики, палочки или попробовать учиться на счетах, а потом уже приучать малыша считать в уме. В возрасте 5 или 6 лет он должен уметь считать без помощи пальцев и других посторонних предметов.

Для первых занятий лучше использовать такие упражнения для детей, в которых не нужно совершать вычисления с переходом через десяток. Подойдут примеры, где все математические действия происходят с целым десятком или десятками и с некоторым количеством единиц, которые прибавляются либо вычитаются.

То есть десяток – основа всего примера.

Сложите кубики, палочки или другие предметы, с которыми вы работаете, по порядку в количестве 10 штук. Объясните малышу, что это десяток. Потом попросите прибавить к этому количеству еще несколько предметов, допустим 4. Говорите: «Десять плюс четыре равно четырнадцать». После того, как вы научили ребенка складывать, подобным образом составьте примеры с вычитанием, например:

18-8=10

13-10=3 и т. д.

Следующий этап – вычисления с переходом через десяток. Такие примеры даются ребятам несколько сложнее. Здесь уже понадобятся знания не только целых десятков и отдельных единиц, но и общее представление состава отдельного числа.

  • Из чего состоит число 3? Из 1 и 2, или 1 и 1 и 1.
  • А что такое 7? Это 1+6= 2+5= 1+1+1+4 и т. д.

Подобным образом поступите со всеми числами, которые знает ребенок, разберите их на составляющие части. Потом эти знания хорошо применить в решении примеров.

Разберем такой пример:

4+9=

Второе слагаемое раскладываем на два составляющих числа, чтобы при сложении с первым слагаемым получить десятку, а потом прибавляем остаток:

4+(6+3)= 10+3=13, т. е. 4+9= 13

Закрепим знания еще несколькими примерами:

5+7=

5+(5+2)= 10+2= 12

или

8+9=

8+(2+7)= 10+7= 17

Таким же образом можно решать примеры с вычитанием:

16-7=

16-(6-1)= 10-1= 9

или

13-8=

13-(3-5)= 10-5= 5

То есть для того чтобы сделать вычисление, раскладываем второе слагаемое таким образом, чтобы при вычитании из первого слагаемого получилась десятка, а потом вычитаем оставшееся число.

Также удобно показать малышу работу со сложением и вычитанием в столбик. В таких примерах нагляднее видно десятки и единицы, что с чем складывать или вычитать.

Напоследок несколько рекомендаций родителям.

  • Во время занятий математикой проявите терпение к своему маленькому ученику и не раздражайтесь от его непонимания, а тем более не кричите.
  • Не давите на ребенка и не заставляйте заниматься, если ему не хочется. Отпустите его, ведь он все равно не сконцентрируется. А в следующий раз придумайте, как его заинтересовать занятиями.
  • Контролируйте время занятий, не держите малыша часами за решением примера. 10-20 минут должно длиться одно занятие. Дети быстро теряют концентрацию, и долговременные занятия нельзя назвать эффективными.
  • На досуге между делом постоянно тренируйтесь с малышом. Когда режете торт, считайте, сколько кусков получилось, когда сервируете стол, посчитайте количество гостей и попросите принести нужное количество тарелок и т. д.

Главное одно – спокойная обстановка, терпение и родительская любовь однажды все равно дадут положительный результат. Не равняйтесь на других, а занимайтесь своим ребенком. Помните, что все дети разные и всем нужен индивидуальный подход.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector